Filter dataset with anisotropic diffusion.
function [ img , status ] = do_andiff_filtering |
( |
|
img, |
|
|
|
options |
|
) |
| |
Filter dataset with anisotropic diffusion.
Use filters from the Diplib library (http://www.diplib.org) or anisodiff function by Peter Kovesi (http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/#anisodiff)
- Parameters
-
img | -> input image img{roi}(1:height, 1:width, 1:color, 1:layers) |
options | -> structure with parameters
- .Filter = 'anisodiff', Perona Malik anisotropic diffusion
- .Filter = 'pmd', Perona Malik anisotropic diffusion, diplib
- .Filter = 'aniso', Robust Anisotropic Diffusion using Tukey error norm, diplib
- .Filter = 'mcd', Mean Curvature Diffusion, diplib
- .Filter = 'cpf', Nonlinear Diffusion using Corner Preserving Formula (improved over MCD), diplib
- .Filter = 'kuwahara', Kuwahara filter for edge-preserving smoothing, diplib
- .Iter -> number of iterations, or shape of the kuwahara filter (0-rectangular, 1-elliptic, 2-diamond)
- .KSigma -> K, edge stopping parameter (pmd), or Sigma,
- .Lambda -> rate parameter (pmd, aniso)
- .Favours -> 1: favours high contrast edges over low contrast ones; 2: favours wide regions over smaller ones. For
anisodiff only
- .Orientation -> orientation parameter: 4 - for xy, 1 - for xz, 2 - for yz
- .start_no -> first index
- .end_no -> start index
- .Color -> color channel, when 0, do for all colors
- .showWaitbar -> [optional], when 1-default, show the wait bar, when 0 - do not show the waitbar
|
- Return values
-
img | -> output image |
status | -> 1 - success, 0 - fail |
- Required fields of options:
References anisodiff(), and roiRegion.roi.
Referenced by ib_anisotropicDiffusion().